Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
PeerJ ; 12: e16928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38436002

RESUMO

Momordica cymbalaria Hook F. (MC), belonging to the family Cucurbitaceae, is a plant with several biological activities. This detailed, comprehensive review gathers and presents all the information related to the geographical distribution, morphology, therapeutic uses, nutritional values, pharmacognostic characters, phytochemicals, and pharmacological activities of MC. The available literature showed that MC fruits are utilized as a stimulant, tonic, laxative, stomachic, and to combat inflammatory disorders. The fruits are used to treat spleen and liver diseases and are applied in folk medicine to induce abortion and treat diabetes mellitus. The phytochemical screening studies report that MC fruits contain tannins, alkaloids, phenols, proteins, amino acids, vitamin C, carbohydrates, ß-carotenes, palmitic acid, oleic acid, stearic acid, α-eleostearic acid, and γ-linolenic acid. The fruits also contain calcium, sodium, iron, potassium, copper, manganese, zinc, and phosphorus. Notably, momordicosides are cucurbitacin triterpenoids reported in the fruits of MC. Diverse pharmacological activities of MC, such as analgesic, anti-inflammatory, antioxidant, hepatoprotective, nephroprotective, antidiabetic, cardioprotective, antidepressant, anticonvulsant, anticancer, antiangiogenic, antifertility, antiulcer, antimicrobial, antidiarrheal and anthelmintic, have been reported by many investigators. M. cymbalaria methanolic extract is safe up to 2,000 mg/kg. Furthermore, no symptoms of toxicity were found. These pharmacological activities are mechanistically interpreted and described in this review. Additionally, the microscopic, powder and physiochemical characteristics of MC tubers are also highlighted. In summary, possesses remarkable medicinal values, which warrant further detailed studies to exploit its potential benefits therapeutically.


Assuntos
Cucurbitaceae , Momordica , Feminino , Gravidez , Humanos , Compostos Fitoquímicos/farmacologia , Cafeína , Vitaminas
2.
PLoS One ; 18(12): e0295498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38096150

RESUMO

Prolonged exposure to high energy diets has been implicated in the development of pre-diabetes, a long-lasting condition that precedes type 2 diabetes mellitus (T2DM). A combination of pharmacological treatment and dietary interventions are recommended to prevent the progression of pre-diabetes to T2DM. However, poor patient compliance leads to negligence of the dietary intervention and thus reduced drug efficiency. Momordica balsamina (MB) has been reported to possess anti-diabetic effects in type 1 diabetic rats. However, the effects of this medicinal plant in conjunction with dietary intervention on pre-diabetes have not yet been established. Consequently, this study sought to evaluate the effects of MB on glucose homeostasis in a diet-induced pre-diabetes rat model in the presence and absence of dietary intervention. Pre-diabetes was induced on male Sprague Dawley rats by a high fat high carbohydrate (HFHC) diet for a period of 20 weeks. Pre-diabetic male Sprague Dawley rats were treated with MB (250 mg/kg p.o.) in both the presence and absence of dietary intervention once a day every third day for a period of 12 weeks. The administration of MB with and without dietary intervention resulted in significantly improved glucose homeostasis through reduced caloric intake, body weights, with reduced plasma ghrelin concentration and glycated hemoglobin by comparison to the pre-diabetic control. MB administration also improved insulin sensitivity as evidenced by the expression of glucose transporter 4 (GLUT 4) and glycogen synthase on the prediabetic treated animals. These results suggest that MB has the potential to be used to manage pre-diabetes and prevent the progression to overt type 2 diabetes as it demonstrated the ability to restore glucose homeostasis even in the absence of dietary and lifestyle intervention.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Momordica , Estado Pré-Diabético , Humanos , Ratos , Animais , Glucose/metabolismo , Ratos Sprague-Dawley , Momordica/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Dieta Hiperlipídica , Insulina/uso terapêutico , Glicemia/metabolismo
3.
Int. j. morphol ; 41(5): 1382-1386, oct. 2023. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1521046

RESUMO

SUMMARY: Mormodica balsamina is a valuable medicinal plant that is used to treat wounds and inflammation; its leaves are also used as an antibiotic and in the treatment of stomach pain. This study was conducted to determine the anti-ulcer activity of methanolic leaf extract of Mormodica balsamina on ethanol-induced ulcer in albino rats. A total of 32 rats were used for the study. Groups I and II served as the baseline and negative controls respectively, while groups III-VII served as the test groups. Group I was untreated, while group II received 1ml/kg body weight of the vehicle (2 % DMSO). Three test groups (III - V) received methanol extracts (75 mg, 150 mg, 300 mg/kg body weight respectively) while the other three test groups (VI - VIII) received aqueous extracts (75 mg, 150mg, 300 mg/kg body weight respectively) via oral gavage for seven days prior to ulcer induction. The rats were sacrificed, stomachs excised and ulcers scored. Histological sections were produced and examined. Findings revealed that M. balsamina extracts protected the rats' gastric epithelia from ethanol induced ulceration to varying degree with the high dose (150 and 300 mg/kg) of both extracts offering the best preservation (42 % and 50 % ulcer protective index respectively) when compared to untreated animals. Histological findings correlated with calculated ulcer indices, with treated animals having less severe gastric mucosal lesions. In conclusion, extracts of M. balsamina may possess reasonable antiulcer activities in rats against ethanol induced gastric ulcer.


Mormodica balsamina es una valiosa planta medicinal que se utiliza para tratar heridas e inflamaciones; sus hojas también se utilizan como antibiótico y en el tratamiento del dolor de estómago. Este estudio se realizó para determinar la actividad antiulcerosa del extracto metanólico de hojas de Mormodica balsamina sobre la úlcera inducida por etanol en ratas albinas. Se utilizaron un total de 32 ratas para el estudio. Los grupos I y II sirvieron como referencia y controles negativos respectivamente, mientras que los grupos III-VII sirvieron como grupos de prueba. El grupo I no se trató, mientras que el grupo II recibió 1 ml/kg de peso corporal del vehículo (2% de DMSO). Tres grupos de prueba (III - V) recibieron extractos de metanol (75 mg, 150 mg, 300 mg/ kg de peso corporal respectivamente) mientras que los otros tres grupos de prueba (VI - VIII) recibieron extractos acuosos (75 mg, 150 mg, 300 mg/kg de peso corporal respectivamente) por sonda oral durante siete días antes de la inducción de la úlcera. Se sacrificaron las ratas, se extirparon los estómagos y se puntuaron las úlceras. Se realizaron y examinaron secciones histológicas. Los resultados revelaron que los extractos de M. balsamina protegieron el epitelio gástrico de las ratas de la ulceración inducida por etanol en diversos grados, y la dosis alta (150 y 300 mg/kg) de ambos extractos ofreció la mejor conservación (42 % y 50 % de índice de protección contra úlceras, respectivamente) en comparación con los animales no tratados. Los hallazgos histológicos se correlacionaron con los índices de úlcera calculados, y los animales tratados tenían lesiones de la mucosa gástrica menos graves. En extractos de M. balsamina puede poseer actividades antiulcerosas razonables en ratas contra la úlcera gástrica inducida por etanol.


Assuntos
Animais , Ratos , Úlcera Gástrica/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Momordica/química , Etanol/toxicidade , Antiulcerosos/administração & dosagem , Plantas Medicinais , Úlcera Gástrica/induzido quimicamente , Extratos Vegetais/química , Momordica balsamica , Folhas de Planta , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Antiulcerosos/química
4.
J Immunol Res ; 2023: 1011659, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274868

RESUMO

Bordetella infection can be efficiently prevented through vaccination. The current study investigated the effects of an extract of Cochinchina momordica seed (ECMS) combined with oil on the immune responses to the inactivated Bordetella vaccine in mice. Serum IgG and IgG1 level was significantly increased in ECMS-oil group compared to any other group (P < 0.05) 2 weeks after immunization, while groups ECMS200 µg/400 µg-oil had a markedly higher level of serum IgG2b and IgG3 than any other groups (P < 0.05). Moreover, lipopolysaccharide/ConA-stimulated proliferation of splenocytes was significantly enhanced in ECMS 400 µg-oil immunized mice in comparison with mice in any other group (P < 0.05). RT-PCR assay revealed that while ECMS800 µg-oil group had significantly higher levels of serum IL-4, IL-10, Toll-like receptor (TLR)2, and IL-1 beta than any other group (P < 0.05), the levels of serum IL-2, IL-4, and IL-10 were markedly increased in ECMS 400 µg-oil group as compared to any other groups (P < 0.05). Blood analysis showed that ECMS800 µg-oil and oil groups had a significantly higher number of immunocytes than any other groups (P < 0.05). There were significant differences in the number of IgG+, IgG2b+, and IgA+ cells in the lung between ECMS800 µg-oil group and any other groups (P < 0.05). Western blot analysis demonstrated that stimulation with ECMS 25 µg/mL or 50 ng/mL led to a significant increase in the expression of TLR2, MyD88, and NF-κB in Raw264.7 cells (P < 0.05). Compared with any other group, the expression of MyD88 was markedly increased in the cells stimulated with ECMS 50 ng/mL, as indicated by the RT-PCR analysis (P < 0.05). Overall, we observed that ECMS-oil efficiently enhanced the humoral or cellular immune responses against Bordetella and suggested that the mechanism of adjuvant activity of ECMS-oil might involve TLR2/MyD88/NF-κB signaling pathway.


Assuntos
Infecções por Bordetella , Bordetella bronchiseptica , Momordica , Animais , Camundongos , Adjuvantes Imunológicos/farmacologia , Bordetella bronchiseptica/efeitos dos fármacos , Imunidade , Imunoglobulina G/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Momordica/química , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Sementes/química , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Infecções por Bordetella/tratamento farmacológico , Infecções por Bordetella/imunologia
5.
Virol J ; 20(1): 50, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949470

RESUMO

BACKGROUND: Plants are used in traditional healing practices of many cultures worldwide. Momordica balsamina is a plant commonly used by traditional African healers as a part of a treatment for HIV/AIDS. It is typically given as a tea to patients with HIV/AIDS. Water-soluble extracts of this plant were found to contain anti-HIV activity. METHODS: We employed cell-based infectivity assays, surface plasmon resonance, and a molecular-cell model of the gp120-CD4 interaction to study the mechanism of action of the MoMo30-plant protein. Using Edman degradation results of the 15 N-terminal amino acids, we determined the gene sequence of the MoMo30-plant protein from an RNAseq library from total RNA extracted from Momordica balsamina. RESULTS: Here, we identify the active ingredient of water extracts of the leaves of Momordica balsamina as a 30 kDa protein we call MoMo30-plant. We have identified the gene for MoMo30 and found it is homologous to a group of plant lectins known as Hevamine A-like proteins. MoMo30-plant is distinct from other proteins previously reported agents from the Momordica species, such as ribosome-inactivating proteins such as MAP30 and Balsamin. MoMo30-plant binds to gp120 through its glycan groups and functions as a lectin or carbohydrate-binding agent (CBA). It inhibits HIV-1 at nanomolar levels and has minimal cellular toxicity at inhibitory levels. CONCLUSIONS: CBAs like MoMo30 can bind to glycans on the surface of the enveloped glycoprotein of HIV (gp120) and block entry. Exposure to CBAs has two effects on the virus. First, it blocks infection of susceptible cells. Secondly, MoMo30 drives the selection of viruses with altered glycosylation patterns, potentially altering their immunogenicity. Such an agent could represent a change in the treatment strategy for HIV/AIDS that allows a rapid reduction in viral loads while selecting for an underglycosylated virus, potentially facilitating the host immune response.


Assuntos
Síndrome de Imunodeficiência Adquirida , HIV-1 , Momordica , Plantas Medicinais , Humanos , HIV-1/genética , Momordica/química , Momordica/metabolismo , Proteínas de Plantas/metabolismo , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/farmacologia
6.
Pestic Biochem Physiol ; 191: 105342, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963924

RESUMO

Ribosome-inactivating proteins (RIPs) are toxic N-glycosylase that act on eukaryotic and prokaryotic rRNAs, resulting in arrest protein synthesis. RIPs are widely found in higher plant species and display strong antiviral activity. Previous studies have shown that PAP and α-MMC have antiviral activity against TMV. However, the localization of RIPs in plant cells and the mechanism by which RIPs activate plant defense against several plant viruses remain unclear. In this study, we obtained four RIPs (the C-terminal deletion mutant of pokeweed antiviral proteins (PAP-c), alpha-momorcharin (α-MMC), momordica anti-HIV protein of 30 kDa (MAP30) and luffin-α). The subcellular localization results indicated that these four RIPs were located on the plant cell membrane. Heterologous expression of RIPs (PAP-c, α-MMC, MAP30, luffin-α) enhanced tobacco mosaic virus (TMV) resistance in N. benthamiana. Compared with the control treatment, these RIPs significantly reduced the TMV content (149-357 fold) and altered the movement of TMV in the leaves of N. benthamiana. At the same time, heterologous expression of RIPs (MAP30 and luffin-α) could relieve TMV-induced oxidative damage, significantly inducing the expression of plant defense genes including PR1 and PR2. Furthermore, application of these RIPs could inhibit the infection of turnip mosaic virus (TuMV) and potato virus x (PVX). Therefore, this study demonstrated that MAP30 and luffin-α could be considered as new, effective RIPs for controlling plant viruses by activating plant systemic defense.


Assuntos
Momordica , Vírus de Plantas , Vírus do Mosaico do Tabaco , Momordica/metabolismo , HIV/metabolismo , Plantas , Vírus de Plantas/metabolismo , Antivirais/farmacologia , Ribossomos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36429944

RESUMO

Our lab investigates the anti-HIV-1 activity in Momordica balsamina (M. balsamina) leaf extract. Traditional Senegalese healers have used M. balsamina leaf extract as a part of a plant-based treatment for HIV/AIDS infections. Our overall goal is to define and validate the scientific basis for using M. balsamina leaf extract as a part of the traditional Senegalese treatment. As an initial characterization of this extract, we used activity-guided fractionation to determine the active ingredient's solubility and relative size. We found that M. balsamina leaf extract inhibits HIV-1 infection by >50% at concentrations of 0.02 mg/mL and above and is not toxic over its inhibitory range (0-0.5 mg/mL). We observed significantly more antiviral activity in direct water and acetonitrile extractions (p ≤ 0.05). We also observed significantly more antiviral activity in the aqueous phases of ethyl acetate, chloroform, and diethyl ether extractions (p ≤ 0.05). Though most of the antiviral activity partitioned into the aqueous layers, some antiviral activity was present in the organic layers. We show that the active agent in the plant extracts is at least 30 kD in size. Significantly more antiviral activity was retained in 3, 10, and 30 kD molecular weight cutoff filters (p ≤ 0.05). In contrast, most of the antiviral activity passed through the 100 kD filter (p ≤ 0.05). Because the active anti-HIV-1 agent presented as a large, amphiphilic molecule we ran the purified extract on an SDS-page gel. We show that the anti-HIV-1 activity in the leaf extracts is attributed to a 30 kDa protein we call MoMo30. This article describes how MoMo30 was determined to be responsible for its anti-HIV-1 activity.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Momordica , Extratos Vegetais/farmacologia , Infecções por HIV/tratamento farmacológico , Antivirais
8.
J Med Chem ; 65(21): 14589-14598, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318612

RESUMO

VSA-2 is a recently developed semisynthetic saponin immunostimulant. It is prepared by incorporating a terminal-functionalized side chain to the branched trisaccharide domain at the C3 position of Momordica saponin II (MS II) isolated from the seeds of perennial Momordica cochinchinensis Spreng. Direct comparison of VSA-2 and the clinically proven saponin adjuvant QS-21 shows that VSA-2 is comparable to QS-21 in enhancing humoral and cellular immune responses. Structure-activity relationship studies show that structural changes in the side chain have a significant impact on saponins' adjuvant activity. However, with the VSA-2 molecular framework intact, the new VSA-2 analogues with various substitution(s) at the terminal benzyl group of the side chain retain the ability of potentiating antigen-specific humoral and cellular responses.


Assuntos
Momordica , Saponinas , Momordica/química , Adjuvantes de Vacinas , Saponinas/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Relação Estrutura-Atividade
9.
Chem Biodivers ; 19(9): e202200200, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35950335

RESUMO

Diabetes mellitus is a typical life threatening of disease, which generate due to the dysfunction of ß cells of pancreas. In 2014, WHO stated that 422 million people were infected with DM. The current pattern of management of diabetes included synthetic or plant based oral hypoglycemic drugs and insulin but drug resentence is become a very big issues in antidiabetic therapy. Thus, it's very earnest to discover now medication for this disease. Now the days, it is well acknowledged that diabetic patients are more prone towards covid and related complications. Thus, medical practitioners reformed the methodology of prescribing medication for covid infected antidiabetic therapy and encouraging the medication contains dual pharmacological properties. It is also well know that polyphenols specifically hold a significant role in oxidative stress and reduced the severity of many inflammatory diseases. Cucumis melo has rich history as ethano-pharmacological use in Indian subcontinent. The fruit and seed are well-known for the treatment of various diseases due to the presence of phenolics. Therefore, in this study, the combined mixture of flower and seeds were used for the extraction of polyphenolic rich extract and tested for antidiabetic activity through the antioxidant and in vivo experiments. The antioxidant potential measurement exhibited that the selected plant extract has the significant competence to down-regulate oxidative stress (DPPH scavenging IC50 at 60.7±1.05 µg/mL, ABTS IC50 at 62.15±0.50 µg/mL). Furthermore, the major polyphenolic phyto-compounds derived from the Cucumis melo were used for in silico anticovid activity, docking, and complementarity studies. The anticovid activity prognosis reflected that selected phyto-compounds amentoflavone and vanillic acid have optimal possibility to interact with 3C-like protease and through this moderate anticovid activity can be exhibit. The docking experiments established that the selected compounds have propensity to interact with protein tyrosine phosphatase 1B, 11ß-Hydroxysteroid dehydrogenase, superoxide dismutase, glutathione peroxidase, and catalase ß-glucuronidase receptor. In vivo experiments showed that 500 mg/kg, Cucumis melo extract ominously amplified body weight, plasma insulin, high-density lipoprotein levels, and biochemical markers. Furthermore, extract significantly downregulate the blood glucose, total cholesterol, triglycerides, low-density lipoprotein, and very low-density lipoprotein.


Assuntos
COVID-19 , Cucumis melo , Diabetes Mellitus Experimental , Momordica , 11-beta-Hidroxiesteroide Desidrogenases , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Biomarcadores , Glicemia , Catalase/metabolismo , Colesterol , Cucumis melo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucuronidase , Glutationa Peroxidase/metabolismo , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina , Lipoproteínas HDL/uso terapêutico , Lipoproteínas LDL/uso terapêutico , Momordica/metabolismo , Peptídeo Hidrolases , Extratos Vegetais/química , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Superóxido Dismutase/metabolismo , Triglicerídeos , Ácido Vanílico
10.
Phytochemistry ; 203: 113354, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35940427

RESUMO

Aiming at overcoming multidrug resistance (MDR) in cancer, we have been studying Momordica balsamina, a vegetable known as African pumpkin. Five undescribed cucurbitane-type triterpenoids (balsaminaepoxide, balsaminatriol, balsaminoic acid, balsaminal, and balsaminol G) along with five known cucurbitacins were isolated from the methanol extract of Momordica balsamina aerial parts, whose structures were elucidated by spectroscopic data, mainly 1D and 2D NMR experiments. Compounds were evaluated for their ability as P-glycoprotein (P-gp/ABCB1) inhibitors in multidrug resistant human ABCB1-transfected mouse lymphoma cells (L5178Y, MDR) and resistant human colon adenocarcinoma cells (COLO 320), using the rhodamine-123 exclusion test, by flow cytometry. Several compounds, which were found to be non-cytotoxic, strongly inhibited P-gp efflux activity in a dose-dependent manner in both cell models. In MRD mouse lymphoma cells, balsaminol G and karavilagenin B were the most active, while in resistant colon adenocarcinoma cells, the strongest inhibitory activity was found for balsaminaepoxide, balsaminatriol and karavilagenin C, being several-fold more active than the positive control verapamil. In chemosensitivity assays, in a model of combination chemotherapy, selected compounds showed to interact synergistically with doxorubicin, thus substantiating their potential as MDR reversers. The strongest synergistic interaction was found for balsaminal and balsaminol G.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Cucurbita , Linfoma , Momordica , Triterpenos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Cucurbitacinas , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Metanol , Camundongos , Momordica/química , Extratos Vegetais/farmacologia , Rodaminas , Triterpenos/química , Triterpenos/farmacologia , Verapamil
11.
Dokl Biol Sci ; 504(1): 85-93, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35821301

RESUMO

Plants are the rich source of compounds having antimicrobial properties against human pathogens. The present study has been carried out to evaluate the antimicrobial potential of Cucumis melo var. agrestis (morphotype I), Cucumis melo var. agrestis (morphotype II), Cucumis melo var. momordica L., Cucumis melo L., Momordica balsamina L., Momordica charantia L., Momordica dioica L. against Staphylococcus aureus, Pseudomonas flourescens, Bacillus coagulans, and Klebsiella pneumoniae. Crude extract of Cucumis L. and Momordica L. species were prepared with methanol, acetone and water for the determination of antimicrobial properties. Maximum yield was reported in methanol extract while minimum in acetone for all plant species. The maximum zone of inhibition of about 32.3 ± 0.57 mm was found against Staphylococcus aureus in Cucumis melo L., 21.3 ± 0.57 mm for Pseudomonas flourescens in Cucumis melo var. agrestis (morphotype II), 17 ± 0 mm for Klebsiella pneumoniae in Momordica balsamina L., and 23.3 ± 0.57 mm for Bacillus coagulans in Cucumis melo var. agrestis (morphotype II) extracts, respectively. The most active antimicrobial plants species were reported to be Cucumis melo var. agrestis (morphotype I), Cucumis melo L. and Momordica charantia L. having antimicrobial activities against all tested microorganisms.


Assuntos
Anti-Infecciosos , Cucumis , Momordica , Acetona , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Metanol
12.
Molecules ; 27(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335263

RESUMO

Prior to consumption, African pumpkin leaves (Momordica balsamina L.) are generally cooked. In this study, the effects of common household cooking methods (boiling, steaming, microwaving, stir-frying) on bioactive metabolites, carotenoids, antioxidant activity, antinutrients and inhibitory effects on α-glucosidase and α-amylase activities were examined. A set of 14 bioactive metabolites were identified in raw and cooked African leaves using UPLC-QTOF/MS. The results showed that the four different types of household cooking methods had different effects on the bioactive metabolomics profile of African pumpkin leaves. In comparison to raw leaves and leaves cooked in other methods, the concentrations of six phenolic compounds, rutin, cryptochlorogenic acid (4-caffeoylquinic acid), pseudolaroside A, isorhamnetin 3-O-robinoside, quercetin 3-galactoside, and trans-4-feruloylquinic acid, were highest in stir-fried leaves. Of all household cooking methods tested, stir-frying increased the content of lutein, ß-carotene, and zeaxanthin by 60.00%, 146.15%, and 123.51%, respectively. Moreover, stir-frying African pumpkin leaves increased the antioxidant activity (DPPH and ABTS) and the inhibition of α-glucosidase and α-amylase. Compared to all four methods of household cooking, stir-frying reduced the antinutritive compounds compared to raw leaves. This work provides useful information to the consumers on the selection of suitable cooking methods for African pumpkin leaves.


Assuntos
Cucurbita , Momordica , Carotenoides/análise , Carotenoides/farmacologia , Culinária/métodos , Folhas de Planta/química
13.
Molecules ; 27(4)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35209099

RESUMO

Natural compounds have been recognized as valuable sources for anticancer drug development. In this work, different parts from Momordica cochinchinensis Spreng were selected to perform cytotoxic screening against human prostate cancer (PC-3) cells. Chromatographic separation and purification were performed for the main constituents of the most effective extract. The content of the fatty acids was determined by Gas Chromatography-Flame Ionization Detector (GC-FID). Chemical structural elucidation was performed by spectroscopic means. For the mechanism of the apoptotic induction of the most effective extract, the characteristics were evaluated by Hoechst 33342 staining, sub-G1 peak analysis, JC-1 staining, and Western blotting. As a result, extracts from different parts of M. cochinchinensis significantly inhibited cancer cell viability. The most effective stem extract induced apoptosis in PC-3 cells by causing nuclear fragmentation, increasing the sub-G1 peak, and changing the mitochondrial membrane potential. Additionally, the stem extract increased the pro-apoptotic (caspase-3 and Noxa) mediators while decreasing the anti-apoptotic (Bcl-xL and Mcl-1) mediators. The main constituents of the stem extract are α-spinasterol and ligballinol, as well as some fatty acids. Our results demonstrated that the stem extract of M. cochinchinensis has cytotoxic and apoptotic effects in PC-3 cells. These results provide basic knowledge for developing antiproliferative agents for prostate cancer in the future.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Momordica/química , Extratos Vegetais/farmacologia , Caules de Planta/química , Antineoplásicos Fitogênicos/química , Apoptose/genética , Biomarcadores Tumorais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Relação Estrutura-Atividade
14.
Nutr Cancer ; 74(7): 2644-2656, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34907814

RESUMO

Targeting Bcr-Abl is the key to the treatment of chronic myeloid leukemia. Despite great progress in the treatment of patients with chronic CML, advanced CML patients are still unable to obtain effective and safe drugs. Momordica cochinchinensis seed is the dried ripe seed of Momordica cochinchinensis, which is a kind of fruit and consumed for dietary as well as medicinal uses. This study aimed to investigate the anticancer activity of Momordica cochinchinensis seed extract (MCSE) in CML cells. CML cells (KBM5 and KBM5-T315I) were treated with MCSE and analyzed for growth, apoptosis, and signal transduction. Nude mouse xenograft model was used to evaluate the antitumor activity of MCSE In Vivo. MCSE significantly reduced the cell viability of CML cells, triggered G0/G1 phase arrest in KBM5 cells and S phase arrest in KBM5-T315I cells. Concurrently, MCSE caused the activation of caspase-3, -8, -9, PARP and the degradation of Mcl-1, ultimately triggering endogenous and exogenous cell apoptosis. Meanwhile, MCSE downregulated Bcr-Abl levels and its downstream signaling pathways. Additionally, MCSE inhibited the growth of CML cells in nude mouse xenografts. Taken together, this study demonstrated the anticancer mechanism of MCSE, namely blocking Bcr-Abl and downregulating Mcl-1, and finally induced apoptosis of CML cells.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Momordica , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Momordica/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Phytomedicine ; 96: 153834, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34952294

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer with a higher mortality rate. Both apoptosis and autophagy are crucial processes in the pathophysiology of NSCLC. Muyin extract (MSE) is a combination of Momordica cochinchinensis (Lour.) Spreng seeds and Epimedium brevicornu Maxim extract, with an optimal ratio of 1:1. Our previous research has firstly shown that MSE exerts a good anti-tumor activity, especially for NSCLC. PURPOSE: This study aims to evaluate the inhibitory effect of MSE on NSCLC and explore the underlying mechanism. METHODS: In vitro, cell proliferation was examined by MTT and colony formation. Apoptosis was detected by annexin V-FITC/PI assay while autophagy was assessed by Acridine orange (AO) and Monodansylcadaverine (MDC) staining. In vivo, Lewis lung cancer cell transplanted mice model was established to measure the effect of MSE on tumor growth. Hematoxylin eosin (H & E) staining was used to observe the pathological changes of the tumor after MSE treatment. The apoptosis in tumor tissue was detected by TUNEL assay. Meanwhile, the cellular proliferation marker Ki67 and autophagy marker LC3Ⅱ were observed by immunohistochemistry staining. The IL-4 and IFN-γ concentrations in blood were tested by Elisa. The apoptosis related factors (Bcl-2, Bax Caspase-3, cleaved Caspase-3, Caspase-9 and p53), autophagy marker proteins (Atg-5, Becline-1, LC3Ⅱ/Ⅰand p62) as well as Akt/mTOR pathway were detected by western blotting. RESULTS: Present study showed that MSE greatly inhibited the proliferation of NSCLC in vitro and in vivo, together with apoptotic rate increasing. P53 and cleaved Caspase-3 levels were up-regulated while Bcl-2/Bax ratio, Caspase-3 and Caspase-9 levels were significantly down-regulated treated with MSE. Meanwhile, MSE activated autophagy, Atg-5, Becline-1 as well as the ratio of LC3Ⅱ/Ⅰ were notably up-regulated while p62 was down-regulated after MSE treatment. Importantly, MSE significantly blocked Akt/mTOR pathway, which is a common upstream signal triggered by autophagy and apoptosis. Furthermore, when co-treated with specific autophagy inhibitor, the inhibitory rate and anti-apoptotic Bcl-2 level were significantly reversed. Impressively, MSE remarkably increased IFN-γ/ IL-4 ratio while VP16 did not in animal model, and the inhibition rate in tumor weight after MSE treatment was higher than xiaojin pill. CONCLUSION: Taken together, it is proved that MSE may be a promising oral TCM candidate for NSCLC therapy with immunity improvement. The underlying mechanisms could be associated with the induction of apoptosis and autophagy through blocking Akt/mTOR pathway, meanwhile, it may promote crosstalk between autophagy and apoptosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Epimedium/química , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Momordica/química , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
16.
J Biomol Struct Dyn ; 40(11): 5175-5188, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33427588

RESUMO

Momordica dioica have proven medicinal potential of antidiabetic, antiviral and immune stimulating properties. Flavonoids and triterpenoids from M. dioica were more extensively investigated for antiviral, antidiabetic and immunomodulatory activities. In this present study, we have predicted the reported bioactive flavonoids and triterpenoids of the plant against the SARS-CoV-2 main protease, RNA-dependent RNA polymerase (RdRp), spike protein, angiotensin converting enzyme (ACE-2) receptor and dipeptidyl peptidase (DPP4) receptor through molecular docking and in silico ADME predictions methods. According to the binding affinities, the two triterpenoids, hederagenin and oleanolic acid exhibited the best docking scores with these proteins than the catechin and quercetin with compared to standard remdesivir, favipiravir and hydroxychloroquine. The in vitro protein-drug studies have also showed significant interaction of catechin and quercetin compounds than standard drugs. The in silico binding studies correlated with the in silico binding studies. Further, M. dioica being used as antidiabetic and its metabolite had significant interaction with DDP4, a comorbidity protein involved in aiding the viral entry. Out of all the natural ligands, quercetin was reported relatively good and safe for humans with high gastrointestinal tract permeability and poor blood brain barrier crossing abilities. Hence, M. dioica phytocompounds reflects promising therapeutic properties against SARS-CoV-2 infections under comorbid conditions such as diabetes, cardiovascular disease and kidney disorders.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , Catequina , Momordica , Triterpenos , Antivirais/química , Antivirais/farmacologia , Comorbidade , Humanos , Hipoglicemiantes/farmacologia , Simulação de Acoplamento Molecular , Momordica/metabolismo , Quercetina/farmacologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química
17.
Braz. J. Pharm. Sci. (Online) ; 58: e20130, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1403716

RESUMO

Abstract The purpose of this research was to develop a hydrogel containing the extract of Gac fruit (Momordica cochinchinensis Spreng) with appropriate physicochemical properties and good dermatological efficacy. The Gac aril fruit was extracted by maceration in dichloromethane, and its antioxidant activity was determined through a DPPH assay. The very low water-solubility of the Gac extract is responsible for its incompatibility with the hydrogel. To overcome this drawback, LabrafacTM PG and Tween 60 were used to develop the hydrogel due to their potent potential for solubilizing the Gac extract. The prepared hydrogels displayed good physical properties, a homogenous orange gel, appropriate pH, and viscosity. After storage in an accelerated condition for six months, the hydrogels of the Gac extract had physical stability and high remaining amounts of beta-carotene and lycopene within the range of 90.25 - 94.61%. The skin efficacy of hydrogel containing the Gac fruit extract was found using 14 healthy female volunteers over a 30-day period of daily application. Topical application of the hydrogel containing the Gac fruit extract, which contains antioxidants, significantly moisturizes the skin and enhanced its elasticity (p ≤ 0.05; ANOVA). This makes it suitable for use as a skin care product


Assuntos
Humanos , Feminino , Adulto , Extratos Vegetais/efeitos adversos , Eficácia , Hidrogéis/análise , Frutas/efeitos adversos , Pele , Análise de Variância , Higiene da Pele , Momordica , Antioxidantes/farmacologia
18.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836147

RESUMO

Whitening research is of particular interest in the cosmetics market. The main focus of whitening research is on melanogenesis inhibition through tyrosinase activity. The mechanism of melanogenesis is involved with tyrosinase activity and p-PKC signaling. In this study, we used Momordica cochinchinensis (Lour.) spreng, a tropical fruit found throughout Southeast Asia, to investigate the inhibitory effect of melanogenesis. M. cochinchinensis contains a high concentration of polyphenols, flavonoids, and unsaturated fatty acids, which might be related to antioxidant activity. This study aimed to determine whether M. cochinchinensis extracts inhibit melanin synthesis in melan-A cells by inhibiting tyrosinase activity and p-PKC signaling. M. cochinchinensis was divided into pulp and aril and extracted under various conditions, and it was confirmed that all pulp and aril extracts have high contents of both phenols and flavonoids. Melan-A cells were treated with PMA for three days to induce melanin synthesis. After PMA treatment, M. cochinchinensis extracts were added to cultured media in a dose-dependent manner. Melanin contents and MTS were used to determine the amount of melanin in live cells. M. cochinchinensis extracts were evaluated for their effects on tyrosinase activity and p-PKC signaling pathways by Western blotting. It was found that M. cochinchinensis extract treatment decreased the amount of melanin and suppressed p-PKC expression. Additionally, tyrosinase activity was reduced after M. cochinchinensis extract treatment in a dose-dependent manner. Therefore, it was concluded that M. cochinchinensis could be used in antimelanogenesis and functional cosmetic materials to improve whitening.


Assuntos
Antioxidantes/farmacologia , Melaninas/biossíntese , Momordica , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Flavonoides/farmacologia , Humanos , Fenóis/farmacologia
19.
J Biol Chem ; 297(6): 101325, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710371

RESUMO

Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.


Assuntos
Cisteína Endopeptidases/metabolismo , Momordica/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Ciclização , Ciclotídeos/genética , Ciclotídeos/metabolismo , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Modelos Moleculares , Momordica/química , Momordica/genética , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Engenharia de Proteínas , Transcriptoma
20.
PLoS One ; 16(9): e0257336, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506588

RESUMO

PURPOSE: To determine the prevalence of crude herbs' use in the self-management of hypertension and the health-related quality of life (HRQOL) in patients with hypertension. METHODS: This cross-sectional study was performed among patients with hypertension attending a government health clinic. Socio-demographic characteristics, lifestyle modifications, medical history and predictors of crude herbs users were obtained. The diversity of crude herbs used was assessed using a modified international complementary and alternative medicine questionnaire (I-CAM-Q) and the HRQOL was assessed using the SF36 instrument. RESULTS: Out of the 294 patients recruited, 52.4% were female, 41.5% were Malay and 38.8% were within the 60 to69 age category. The prevalence of crude herbs users was 30.6% and the most common herbs used were pegaga (Centella asiatica), peria (Momordica charantia) and betik (Carica papaya). Using the regression analysis, significantly higher odds of using crude herbs are noted among Malay or Indian patients who have these characteristics: attained secondary education, experienced falls or muscle pain, and had systolic blood pressure of more than 140 mmHg. There was no significant difference in HRQOL domains between the crude herb users and non-users (p>0.05). CONCLUSION: Besides taking allopathic medications, certain patients with hypertension use crude herbs as a form of self-management. Although patients are adamant about integrating crude herbs as a form of self-management, the effects of doing so have not been properly investigated. This implies that the healthcare staff members need to communicate with the patients regarding the use of crude herbs together with conventional drugs.


Assuntos
Hipertensão/psicologia , Hipertensão/terapia , Preparações de Plantas/uso terapêutico , Qualidade de Vida , Autogestão , Idoso , Carica , Centella , Estudos Transversais , Feminino , Humanos , Hipertensão/epidemiologia , Estilo de Vida , Malásia/epidemiologia , Malásia/etnologia , Masculino , Pessoa de Meia-Idade , Momordica , Prevalência , Atenção Primária à Saúde/organização & administração , Análise de Regressão , População Suburbana , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...